

Energy research Centre of the Netherlands

Linking ammonia emission reduction and air concentrations and depositions of reduced nitrogen in Europe

Albert Bleeker

ECN Air Quality & Climate Change

Outline

- Background of this (trends) study
- Results previous trends study
 - Data on emissions and concentrations/depositions
 - Conclusions drawn
- What happened since that study?
 - Did it bring new insights?

Background of this trends study

- Builds on previous study by Sutton et al. (2000)
 - Background document for the UN/ECE Ammonia Expert Group (AEG)
- Reason for update of the 'old' study
 - Additional 5 years of information
 - New studies on emission/concentration/deposition relations
- Input to new background document to be presented at the December meeting of UN/ECE AEG

Why is this study important?

- Emission/transport/deposition of reduced nitrogen (NH_x; NH₃ and NH₄+) will eventually lead to eutrophication and acidification of ecosystems and contribute to local air quality
- Recognizing this, together with the transboundary nature of the problem, the UN/ECE developed protocols on:
 - Limiting NH₃ emissions
 - Reducing SO₂, NO_x and VOC concentrations
 - Setting national emission ceilings to be reached in 2010 (Gothenburg Protocol, 1999)
- In parallel: European Union agreed on the 'National Emissions Ceilings Directive (NECD)', setting targets for e.g. NH₃ emissions binding in European Law.

Why is this important? (II)

- Evidence needed for effective NH₃ emission reduction:
 - Achievable
 - Measurable
- NH₃ emissions mainly from agricultural sources, thus:
 - Abating NH₃ will be in agricultural sector
 - Reduction in animal numbers
 - Reducing fertilizer consumption
 - Implementing technical measures
- Since reducing sector activity was not an option, there is a need to demonstrate the effectiveness of technical measures

Challenges

- Quantify the link between NH₃ emission changes and monitored atmospheric NH_x in situations where emissions have definitely changed
 - Note: not only NH_x issue. Many questions regarding linearity between SO₂ and NO_x emissions and NH_x concentrations
- Assess the effectiveness of NH₃ emission abatement policies

What has been done?

- 2000 trends study brought together information about the link between NH₃ emission and measurements (concentration and deposition) from different case studies:
 - link between agr. sector activity and atm. NH_x
 - Hungary, Slovakia, Former East & West Germany, Russia, Switzerland & North Carolina
 - link between NH₃ emission abatement and atm. NH_x
 - Netherlands
 - Denmark

Emissions: are they true?

Hungary

- 53% emission reduction
- no clear trend in either NH₄ or NH₃

Slovakia

- 44% emission reduction
- ~20% reduction of NH₄ between 1990-1999

Netherlands

- 35% emission reduction
- 10% reduction NH₄ wd
- 29% reduction NH₄ aerosol
- Again: part of the explanation parallel changes in SO₂ and NO_x emission
- But also: overestimation of effectiveness of measures

Netherlands – effect of changing SO₂ and NO_x

- 1984 SO₂ and NO_x emissions and actual emissions
- increase in NH₃ conc. and decrease in NH₄ wd

Overall conclusions

- many difficulties involved in evaluating changes in NH₃ emissions by using monitoring networks
 - need for long time series
 - interaction with other components (SO₂ & NO_x)
 - models used not always 'complete'
- caution when measured values do not follow expectations:
 - limitations in the models
 - limitations in the monitoring
 - ineffectiveness of the abatement techniques

What happened since?

- Ongoing discussion on trends (in relation with meeting the NECD targets)
 - Additional measuring programmes
 - Evaluating/updating models
 - Emissions
 - Transport/deposition
- Updated information; 5 additional years
 - Emissions
 - Concentrations/depositions
- New studies
 - United Kingdom
 - Netherlands
 - EMEP

Updated EMEP emissions for Europe

The Netherlands

The Netherlands (II)

30 % difference

- Emission uncertainties
- Dry deposition parameterization

United Kingdom

- Question to be answered:
 - Can we detect NH₃
 emission changes after
 the outbreak of foot &
 mouth disease?
- Study motivated by Dutch &
 E. European experience of
 difficulty to see trends
 following emission reductions

Slovak Republic

EMEP - Europe

NH₃+NH₄+ decrease more as a consequence of SO_x reductions

Less effect on conc. in precip: less scavenging of NH₄⁺ compensated by more of NH₃

Tendency for air concentrations to decrease more than wet depositions— model predicts this to be caused by the SO₂ emission reductions

USA – North Carolina

Comparison of NH₃ emissions in the coastal plain region of North Carolina, USA, against NH₄⁺ precipitation concentrations and wet deposition at the NADP monitoring site NC35 in Sampson County (Aneja et al., 2006)

USA – National Trends Network (NTN)

Overall

- Much effort put in trying to get a grip on the linkages between emissions and concentration
- New studies (again) showed relevance of having insight in:
 - Adequate emission estimates
 - Adequate model parameterizations
 - Need for long-term good quality measurements
 - in contrasting areas (evaluating abatement measures)
- If all this can be brought together, valuable evaluations on the effectiveness of NH₃ abatement measures can indeed be made
- However, further discussion needed on reasons behind observed (lack of) trends in emissions and concentrations

UN/ECE Expert Group on Ammonia

4 – 6 December 2006, Edinburgh (UK)

- Datasets on trends of NH_x still welcome, to be included in the background document
 - Not only Europe; also other experiences are needed to get the full picture
- Contact: a.bleeker@ecn.nl