Denitrification process in energy sector and transport as source of increased nitrous oxide emissions

Karel Borovec, Pavel Danihelka, Tadeaš Ochodek

Denitrification process in energy sector and transport as source of increased nitrous oxide emissions Overview

- Theoretical part
- Measurement metod
- Experimental part
 - Coal combustion, municipal solid waste, mobile sources - cars
- Conclusion

Nitrous oxide is one of the trace gases that contribute to greenhouse warming as well as stratospheric ozone depletion.

 $N_2O + O = 2 NO$ $NO + O_3 = NO_2 + O_2$ $O + O_3 = 2 O_2$

N₂O – Greenhouse Gas

Greenhouse Gas	Global Warming Potential	Antropogenic sources (%)	Long Lifetime on Atmosphere (Years)
CO ₂	1	60	5 – 10
CH ₄	21	15	10
N ₂ O	315	6	10 - 150

*Without H₂O

The global contribution of N₂O by sectors

The share of anthropogenic emissions by sector varies according to world region and specific economic activities. Based on various studies the approximate global contribution by sector is follows:

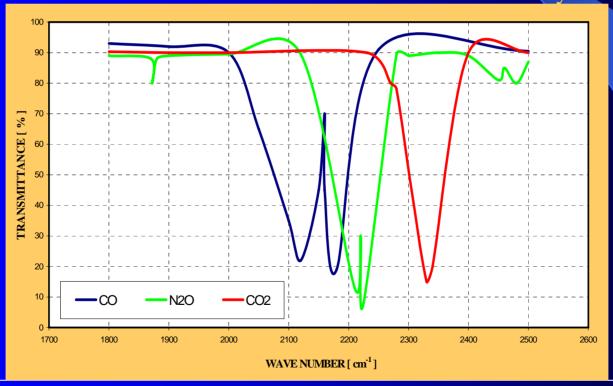
The global contribution of N₂O by sectors

- Agriculture and land 50-70%
- Industrial sources, mainly nitric acid and adipic production 15-25%
- Stationary and mobile fossil fuel combustion 15-25%

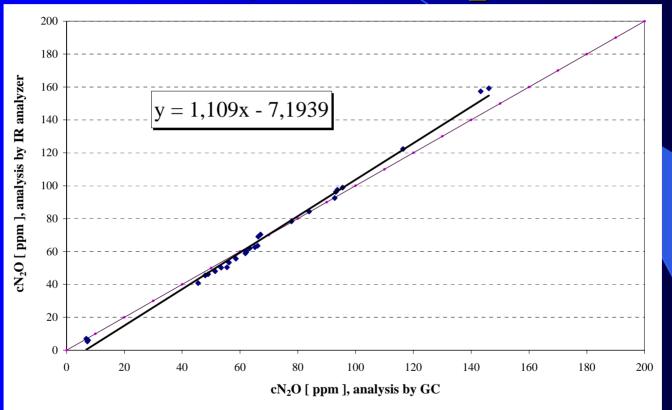
Production of N₂O from fossil fuel combustion Oxidation of the fuel-nitrogen

N₂O is formed via two different pathway

- gas phase oxidation of nitrogenous groups in the volatile – HCN,
- the heterogeneously catalysed oxidation of the char-bound N – species


Production of N₂O from fossil fuel combustion

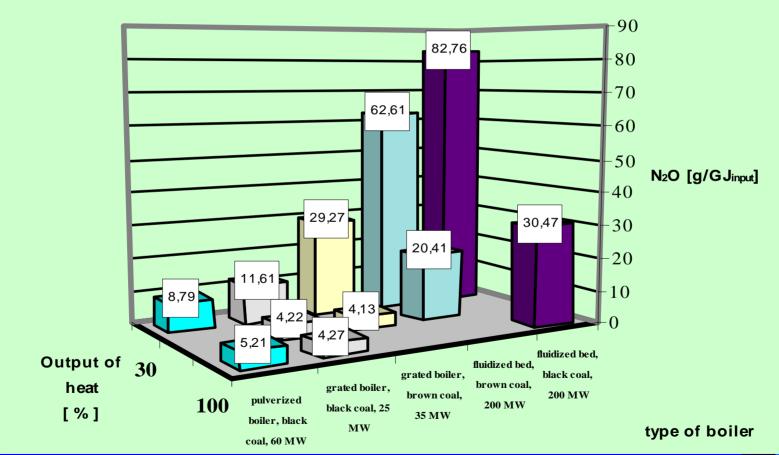
Denitrification processes, NO and NO₂ are removed, source of N₂O
 Primary denitrification modification of combustion process
 Secondary denitrification post-combustion catalytic or non catalytic


Experimental part

- IR spektrofotometry
 - Advantage is continuous measurement
 - Possibility of interferences CO₂, C_xH_y, CO

Comparison of the IR and GC analyses of N₂O

Maximal diference +/- 25 %, it is valid for content of CO when is lower than 500 ppm



Equipment for measurement

Coal combustion technologies, primary denitrification

Coal combustion technologies, secondary denitrification

SNCR – ammonia – reagent for deNO_x Conversion of the reduced NO_x to N₂O, 3-8%, SCNR – urea – conversion of the reduced NO_x to N₂O is 2-2,5 higher than NH₃,

Emission factor, results from measurenment in CZE	N ₂ O	NO _x
Emission factor, results from measuremment in CZE	g.GJ ⁻¹	g.GJ⁻¹
Combustion proces with deNO _x	22,8	202,7
Combustion proces without deNO _x	4,2	296,3

Production of N₂O from municipal solid waste

Noticeable source of nitrous oxide
Very little work on their characterization
Project researching on ERC Ostrava

N₂O formation by noncatalytic denitrification processes concerning energy utilisation of Waste

Production of N₂O from municipal solid waste Municipal solid waste

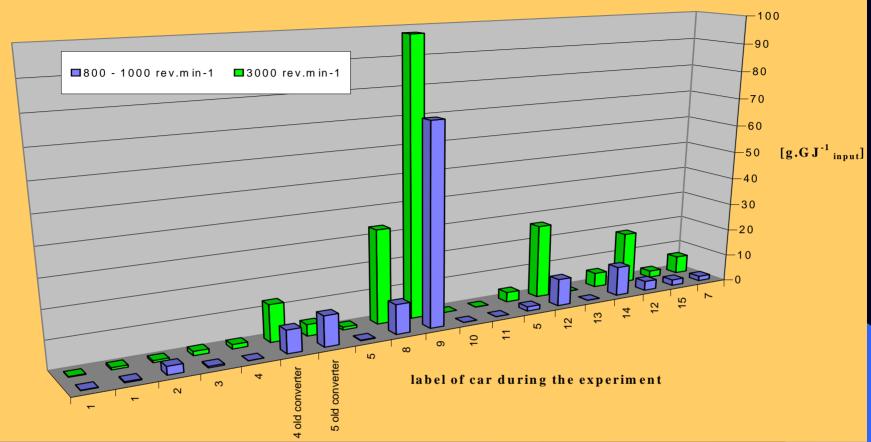
*Gutierez, Baxter, Content of N – 0,1-1 mass % Hunter, Svoboda **SNCR – urea** – reagent for $deNO_{x}$ Conversion of the reduced NO_x to N₂O, 20-30% *, **SNCR – ammonia** – reagent for deNO_v Conversion of the reduced NO_x to N₂O, 10-15%*, SCR – type of catalyst, Conversion of the reduced NO_x to N_2O , 3-8%*,

Production of N₂O from mobile sources

Mobile sources - cars

- The following criteria of the measured cars were monitored with regard to the concentration level of nitrous oxide:
- Type of engine
- Type of fuel
- Operation output revolutions of engine
- With or without catalytic converter
- Age of catalytic converter

Catalyst for CO oxidation



Amount of CO in emission from cars is higher than 0,05%

Emision factors

1, 2, 3, 8, 9	engine without catalytic converter
4	engine with one-way catalytic converter
5, 10-14	engine with three-way catalytic converter
7, 15	diesel
12	LPG

Dependence on the age of catalytic converter

Engine with one-way converter	After running 5 000 km	After running 25 000 km	
	N ₂ O [g.GJ ⁻¹]		
900 rev.min ⁻¹	0,1	17,2	
3000 rev.min ⁻¹	3,1	24,7	

Conclusion

- Denitrification of emissions from combustion processes in energy an transport increases emission of nitrous oxide
- There are general lack of results
- EF of NO_x decrease, new denitrification units will be installed and production of N₂O will be increased ?
- The work was performed thanks to the project No. 101/05/P278 of the Grant Agency of the Czech Republic.

