

### Why has nitrogen control failed within various policies

Peringe Grennfelt



### Outline

- Has Nitrogen abatement policies failed?
- If so, can we understand the reason?
- What can we do to improve policy?
- European perspective



# Environmental problems and policy processes of relevance for Nitrogen

- Local air pollution NO<sub>2</sub> (EU CAFE)
- Regional air pollution N deposition, ozone, particles (EU CAFE - CLRTAP)
- Groundwater nitrate (Nitrate directive, WFD)
- Biodiversity (Habitat directive, Natura 2000)
- Marine eutrophication (Marine conventions OSPAR, HELCOM, MARPOL, WFD)
- Hemispheric ozone (TFHTAP, CLRTAP)
- Climate change N<sub>2</sub>O, ozone, aerosols (Kyoto protocol)
- Sector policies (CAP, Autooil, energy policies)



### **Air pollution**

- In general land based NOx and NH<sub>3</sub> emissions in Europe have been reduced in the order of 20-40% since 1980
- The CAFE baseline scenario for European emissions indicates that NOx emissions will be further reduced with about 40% by 2020
- The CAFE baseline scenario indicates no reductions of ammonia emissions for the period 2000 – 2020
- This will lead to a substantial increase in the ratio  $N_{red}/N_{ox}$  i Europe.
- Commitments made in the Gothenburg Protocol and the NEC Directive will be difficult to achieve



### NO<sub>x</sub> emissions projected for 2010

compared to NEC emission ceilings



Swedish Environmental Research Institute

### NH<sub>3</sub> emissions projected for 2010

compared to NEC emission ceilings (IIASA)





### Excess of critical loads for eutrophication 2020



Percentage of ecosystems area with nitrogen deposition above critical loads, using grid-average deposition. Average of calculations for 1997, 1999, 2000 & 2003 meteorologies

Swedish Environmental Research Institute

#### Percent of ecosystems area

with nitrogen deposition above critical loads for eutrophication (Data from IIASA)



■2000 ■2010 ■2020



#### NinE ESF workshop

Peringe Grennfelt 17 Oct. 2006



### Marine conventions

- HELCOM and OSPAR: Objective 50% reduction in nutrient load (1988)
- What are the results?
- Example from the river Elbe. (Grimvall et al)





### **Phosphorus or Nitrogen?**

- An intense debate over many years
- Although reductions in input, the situation in the Baltic has become worse
- A recent evaluation indicate that P is more important to reduce in the Baltic than N.
- For normal marine areas N is still most important
- The last word is not said yet



















#### Normalised load of total nitrogen carried by the Elbe River



Peringe Grennfelt 17 Oct. 2006

## What has caused the reduction in N load?

| Five-year- | Direct      | Discharge from   |  |
|------------|-------------|------------------|--|
| period     | industrial  | wastewater       |  |
|            | discharge   | treatment plants |  |
|            | (kton/year) | (kton/year)      |  |
| 1983-1987  | 59.8        | 69.0             |  |
| 1993-1997  | 18.0        | 45.6             |  |







#### Normalised load of total phosphorus carried by the Elbe River



**VLI** Swedish Environmental Research Institute

## Nutrient load to the Baltic from Poland 1990 - 2000





### **Conclusions** Marine input of nutrients

- The agreements to reduce nutrient input within HELCOM and OSPAR areas with 50% have failed.
- Investments in measures have to a large extent been focused on point sources.
- Reductions within the agricultural area has so far been limited.
- There is an increasing interest in reducing P emissions within the Baltic area.



# Why have we failed to achieve substantial reductions in N emissions?

- Lack of scientific evidence linking environmental effects (risks) with emissions?
- Lack of control technologies?
- Focusing on the wrong problems?
- Lack of policy instruments?
- Interference from other policies?
- Too costly?
- Lack of interest?



# Why have we failed to achieve substantial reductions in N emissions

- Lack of scientific evidence linking environmental effects (risks) with emissions? (the N/P debate, the importance of ship emissions not known until recently)
- Lack of control technologies? (agriculture, air traffic)
- Focusing on the wrong problems? (industry and wastewater instead of agriculture)
- Lack of (or bad) policy instruments? (marine emissions, agiculture)
- Interference from other policies? (CAP)
- Too costly? (some of the agricultural measures)
- Lack of interest? (biodiversity?)

#### How do Conventions and EU act in their development of policies?

| Policy<br>framework | Openness and<br>transparency | Internat.<br>scientific<br>support | Scientific<br>involvment in<br>organisation | Legally<br>binding<br>decisions |
|---------------------|------------------------------|------------------------------------|---------------------------------------------|---------------------------------|
| CLRTAP              | High                         | High                               | High                                        | Yes, weak                       |
| HELCOM              | Low                          | High                               | Intermediate                                | No                              |
| OSPAR               | Intermediate                 | High                               | Intermediate                                | No                              |
| EU Directives       | Intermediate increasing      | Increasing                         | Intermediate                                | Yes, strong                     |
|                     |                              |                                    |                                             |                                 |



# Why should we focus more on ammonia emissions to the atmosphere

- Present policies will give priority to NOx.
- Emissions of NOx are decreasing in industrial areas and there are options for a further decrease.
- The control options for ammonia are limited.
- It takes time to influence the agricultural sector.
- New initiatives are urgently needed
- Two main ways forward:
  - Pollution control
  - Control of the overall fixation of nitrogen



### **Control of emissions**

- The present control systems will not be able to reduce ammonia emissions substantially.
- Pressure on agriculture has been limited. Technology development not driven by environmental needs.
- Will economic instruments help?
- Internalisation of damage costs. Recent study by von Blottnitz et al indicate that the environmental costs are of the order of 300€ per ton of nitrogen released.
- To be compared with the price of fertilizers: 500€ per ton N.
- A system of internalizing costs depends on how it is established.



# Some thoughts about N2O in relation to Paul Crutzen' talk

- What would happen if the N<sub>2</sub>O emissions were included in the European CO<sub>2</sub> trading system? .
- Using the data from the presentation will give a CO2/N ratio of approx. 20 in GWP units.
- With a price of 10-30€ per ton CO<sub>2</sub>, the corresponding price on N release would be 200-600€ per ton.



# How should ammonia control systems develop in the future?

- Regional approaches?
- Global approaches?
- Problem driven versus sector driven approaches?
- Integrated approaches? Large changes in agricultural practices and policies necessary in order to substantially decrease N emissions (air and water) in Europe
- Scientifically sound and possible from a policy point of view



# Few sources to Nitrogen surplus in the environment

Main yearly emission of N within EU 15 (million tonnes)

N surplus in agriculture
Agricultural ammonia emissions
Agricultural N to soils and water
NOx emissions
Sanitary N emissions

Total N input within EU 15 approx.





### Thank you

