Measurement and modelling of ammonia flux between the atmosphere and aquatic ecosystems in Hungary

Szilvia Kugler

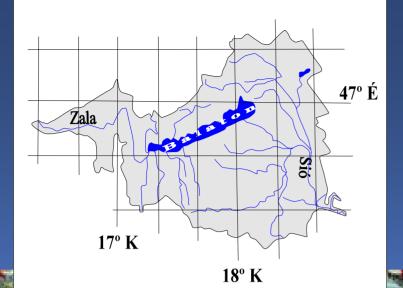
Department of Meteorology, Eötvös Loránd University, Budapest, Hungary

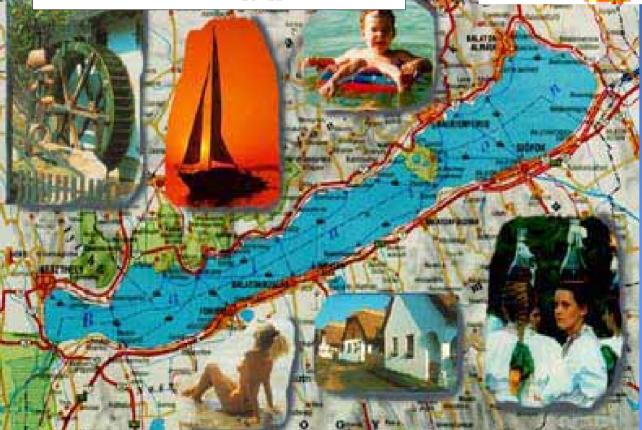
Introduction

- Results of the previous investigations
- Introduction of the applied methods: measurement, modelling
- Results
- Summary, conclusions

Results of previous investigations

- Ammonia compensation point model
- Max. emission 0,131 μ g m⁻²s⁻¹
- Max. deposition 0,087 μ g m⁻²s⁻¹
- Only summer measurements
- CO₂ concentration 350 ppm
- pH of the water 8,1

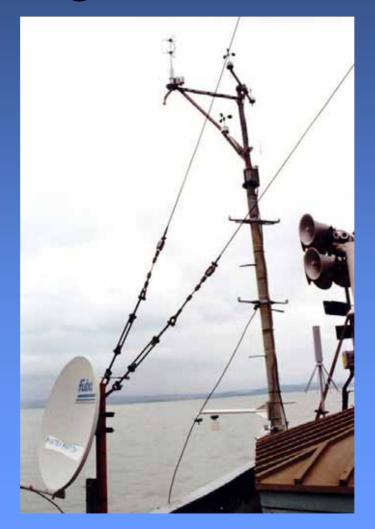

Horváth, L. (1982): On the vertical flux of gaseous ammonia above water and soil surfaces. In: *Deposition of Atmospheric Pollutants.* (Ed: D. Reidel) Dordrecht, 17-22.



Acquatic ecosystem

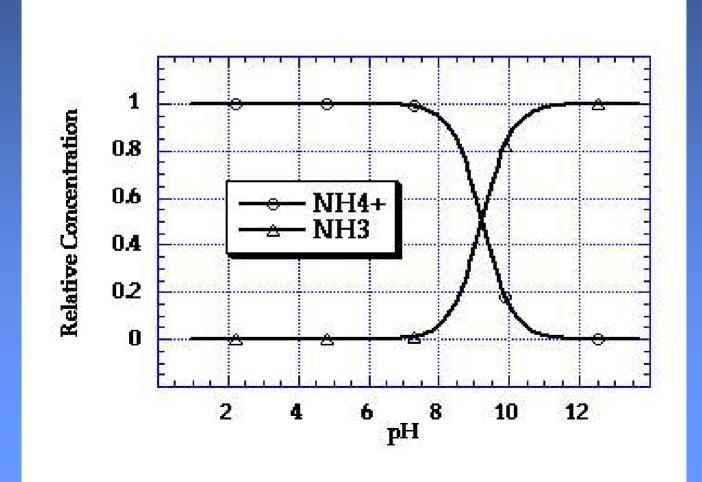
- Lake Balaton
- Largest lake in CE (600 km²), average depth 3 m
- Eutrophication problems ('70s)
- One of the main source of nutrients (N): atmospheric dry and wet deposition
- Aim: determine the magnitude of atmospheric NH₃- exchange

Atmospheric input


- Wet deposition of NO_3^- and NH_4^+
- Dry deposition of particle NO₃⁻ and NH₄⁺
- Net flux of NH₃ (bi-directional)
- Dry deposition of NO, NO₂ and HNO₃
- Possible emission of N_2O (and N_2)

Measurements: March 2002- February 2003

Sampling site near the lake



Sampling site near the lake

Net flux of ammonia

Mean pH of the water is 8.5: both NH_4^+ and NH_3 exist, bi-directional flux

Ammonia exchange model 1.

• Flux:
$$F = -\left[C(z_{ref}) - C(z_0)\right]\left(\frac{1}{R_a + R_b}\right)$$

- where $C(z_{ref})$: concentration measured at the reference height,
- $C(z_0)$ the compensation point concentration at z_0

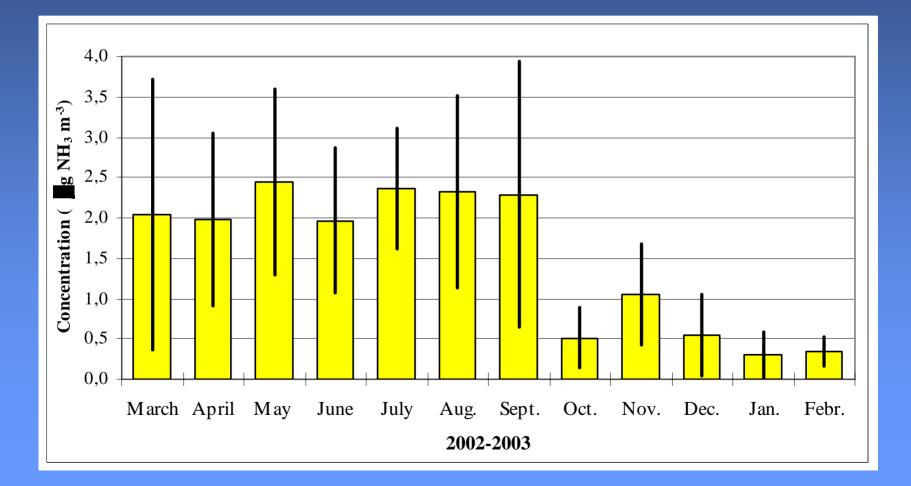
Direction of flux is determined by the difference of $C(z_{ref})$ and $C(z_0)$

Concentration measurements $C(z_{ref})$ (at 12.3 m)

Modelling the resistances and heat fluxes with the measurements

Ammonia exchange model 2.

• Compensation point C (z₀):

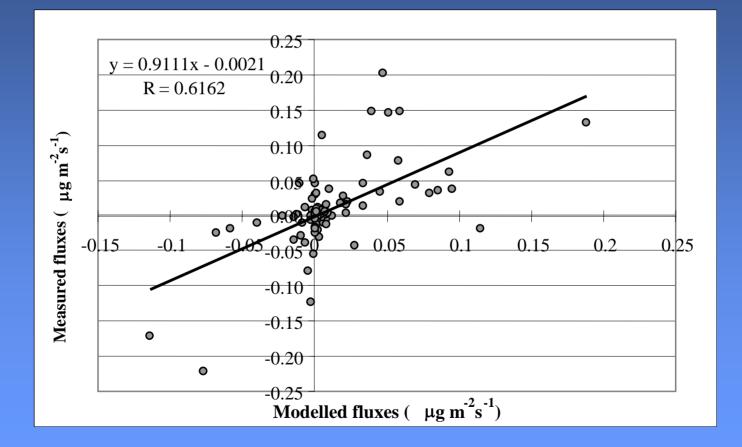

(CO₂ present increases the volatilisation of ammonia, Lau and Charlson, 1977: Atmos Envir 11, 1133-1147)

$$C(z_0) = \frac{C_w (H_1 H_2 [CO_2] Q + 1)}{H_1 H_2 P [CO_2] + (H^+) \frac{K}{K_w} H_1 + H_1}$$

P,*Q*: constant, *H*₁, *H*₂: Henry-constant, *K*: NH₃ hydrolysis constant, *K*_w: ion-product of water, *CO*₂: atmospheric concentration, *C*_w: NH₃+NH₄⁺ concentration in water, *H*⁺: H⁺ ion concentration.

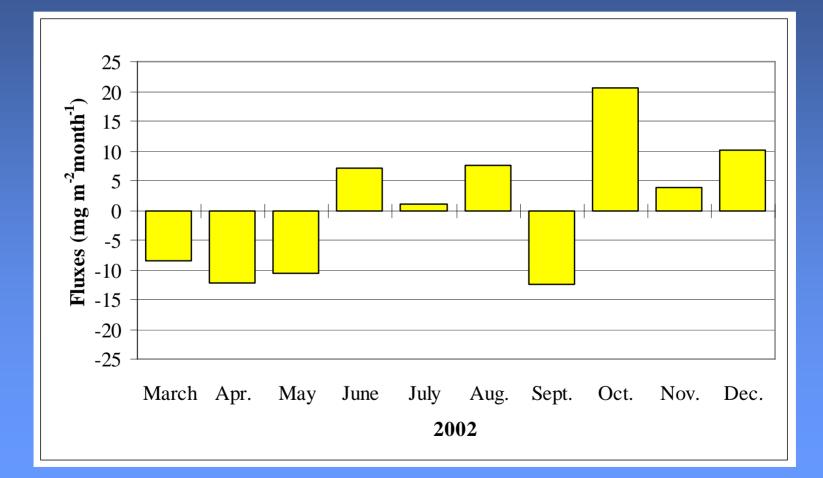
• Measurement of $NH_3 + NH_4^+$ and pH in the lake water

Monthly mean concentration and standard deviation of atmospheric ammonia concentration at Siófok station (near the lake)

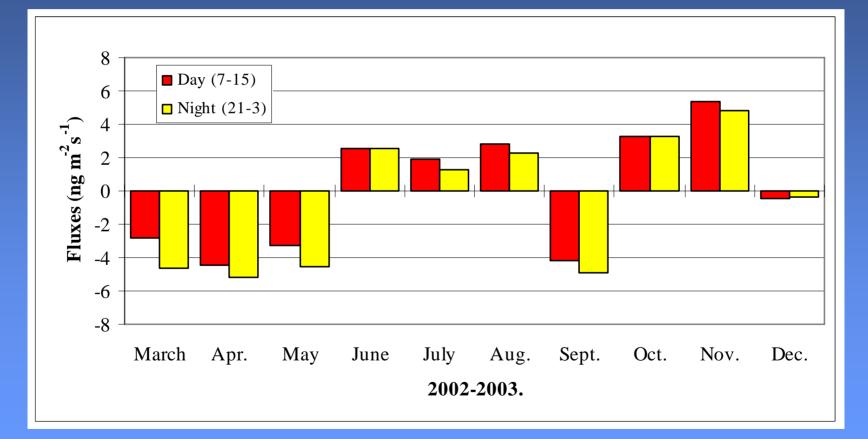

Verification of the model

- Model verification with the gradient method during 2 expeditions
- Concentration measurements at 2 levels

• Flux:
$$F = -K_H \frac{\Delta C}{\Delta z}$$


- K_H : turbulent diffusion coefficient
- $\Delta C/\Delta z$: concentration gradient

Comparison of the modelled and measured ammonia fluxes


Monthly summarized ammonia fluxes

(lake was frozen up in January, February: no flux)

Day and night monthly averaged ammonia fluxes

(lake was frozen up in January, February: no flux)

Results

Name of the	Wet deposition	Dry deposition	Sum
component	(mg N/m ² year)	(mg N/m ² year)	(mg N/m ² year)
Nitrogen- monoxide (NO)	-	<1	-
Nitrogen-dioxide (NO ₂)	-	25	25
Nitrate (NO_3^-)	811	7.7	818.7
$\begin{array}{c} \text{Ammonium} \\ \text{(NH}_4^+) \end{array}$	112	11.2	123.2
Ammonia (NH ₃)	-	-5.4	-5.4
Nitric acid (HNO ₃)	-	31.6	31.6
Sum (N)	923	70.1	993.1

Conclusions

- Wet deposition is dominant (90%) in total atmospheric N-input (1 g N/m² yr)
- Ammonia emission is 5.4 mg N/m² year negligible
- Ammonia can play a buffering role (negative feedback when emission increases with the increase of N-load from other sources)
- Probably phosphorus is the limiting factor in the eutrophication

Future tasks

- Application for see-air exchange
- Net fluxes of other gases (mainly N₂, N₂O) for the total nitrogen balance