

AGRICULTURE AND NITROGEN; WHAT GOES IN MUST COME OUT

Oene Oenema

Wageningen University & Research Center, The Netherlands

WAGENINGENUR

Outline

Agriculture and N flows

Pollution swapping in EU-25+
 NH₃ emission abatement measures
 NO₃ leaching abatement measures

Agricultural Systems

- Crop production systems
 - Arable crops
 - Vegetables & fruits & flowers
 - Greenhouse systems

Animal production systems

- Grazing systems
- Mixed systems
- Land-less or foot-loose systems (industrial)

Huge diversity in crop production

Huge diversity in animal production

Agriculture and net primary production

Current share of Agriculture to global flows

- NH₃ emissions~ 90%
- N₂O emissions~ 50%
- CH₄ emissions~ 20%

Much related to animal production

- N excretion ~ 1.2 x N fertilizer production
- Pexcretion ~ 1.5 x P fertilizer production
- K excretion ~ 3 x K fertilizer production

Partitioning of NH₃ sources in Agric.

- Animal housing
- Manure application
- Grazing animals
- NH3-based fertilizers
- Other sources

20-40% 20-30% 10-20% 10-20% 5-10%

Global N cycle

Crop yield at harvest and N uptake

N uptake in the plant

N intake, retention and excretion by animals

N partitioning

N in urine

N retention

N in dung

N intake by animals

Agriculture & nitrogen: what goes in must come out

N budgets in Agriculture

In experiments, often N inputs > N outputs + N losses

- Allison (1955)
 - Enigma of the nitrogen balance

- Garrett et all (1993)
 - Unaccounted for N increases with N input in grazing systems

Nitrogen cycling in crop production

N deposition Biofixation Fertilizer

Nitrogen cycling in land-less animal farming

Nitrogen cycling in mixed systems

Nutrient budgets in Agriculture and confusion

- Partial versus complete budgets
- Farm-gate versus soil surface budgets
- Compartment versus system budgets
- System A versus system B
- Static versus dynamic approaches

N budgets beef & dairy systems, kg/ha/y

Budget item	Beef	Beef	Dairy	Dairy
Total Inputs	23	175	568	240
• Feed			182	80
Fertilizer			330	74
Deposition	15	14	49	49
Biofixation	8	160		8
Other			7	29
Total Outputs	13	60	561	200
• Milk			68	64
Meat	3	23	10	13
NH3 loss	3	10	129	32
Denitrification	2	4	201	42
Leaching	5	23	150	52
Balance	10	115	7	40
O/I efficiency,%	13	13	13	31

N budgets land-less farms, Mg/farm/yr

Budget item	Pig	Broilers	Layers	
Total Inputs Feed Animals Other 	20.8 18.8 2.0	21.8 21.5 0.3	36.8 35.0 1.0 0.8	
 Total Outputs Animals Eggs NH₃ loss Manure Other 	24.2 9.4 4.0 10.7	20.7 10.6 3.4 5.8 0.9	35.7 1.9 11.1 4.4 18.1 0.3	
Balance	-3.4	1.1	1.1	
O/I efficiency,%	45	48	35	

Inputs & Output/Input ratios (O/I)

 Crop production 	<u>l (kg/ha)</u>	0/1
 Arable crops 	10- 300	0.3-0.7
 Vegetables 	100 -1000	0.2-0.6
- Glasshouses	500-2000	0.2-0.6

Animal production

- Grazing systems
- Mixed systems
- Land-less systems

10 - 100 100-500 10³- 10⁵ 0.1-0.2 0.1-0.3 0.3-0.6

Agricultural N-flows and EU policies

Regulations hindering farm development

Regulations	Pig farmers, %	Poultry farmers,%
 Zoning restrictions 	44	29
Building permits	17	27
Environmental permits	58	55
Manure policy	26	30
 Production rights 	34	35
Nature conservation pla	ans 10	12
• Animal health & welfare	e 21	38
 Food safety regulations 	5 5	10
• Fiscal legislation Source: Ha	4 rtog et al., 2004	10

Categorizing of policies & measures

Abatement of emissions of N species Risks of pollution swapping

□Control of N input □Synergistic effects possible

□Spatial zoning

Complex; both, antagonistic and synergistic effects possible

Categorizing measures of Nitrates Directive

Spatial zoning of Nitrate vulnerable zones

Control of N input via animal manure (+ N fertilizer)

□Abatement of emissions of NO₃ leaching

Categorizing measures of CLRTAP / NEC / IPPC

Abatement of emissions of NH₃ (and other N species)

□ Control of N input via animal feed

Integrated approach and flexibility of IPPC may include spatial zoning Modelling tool to assess interactions between environmental policies in EU-25+:
 Activity data: Eurostat and CAPRI
 NH₃, N₂O and CH₄ emissions: following RAINS/GAINS
 Nitrate leaching; newly developed, using Corine land use and JRC soil data

Spatial scales
 Country level
 Nuts 2 level
 Nitrate Vulnerable Zones

Ammonia emissions

Effects of 'RAINS' measures on NH₃ emissions

Effects of 'ND' measures on NH₃ emissions

Effects of 'RAINS' measures on NO₃ leaching

Average nitrate leaching in NUTS 2 regions, kg N per ha

Mean effect of RAINS and ND measures, %

Measure		NH ₃	NO ₃	N ₂ O
		EU-25	EU-15	EU-25
Ammonia	Biofiltration	-6	1	0
	Low ammonia application - high	-11	4	8
	Covered storage - high	-4	4	0
	Stable adaptation	-23	8	5
	Low nitrogen feed	-3	-2	-1
	Incineration	-4	-3	-1
	Urea substitution	-8	2	-1
	Package	-49	11	7
Nitrate	Balanced fertilization	-10	-63	-22
	Maximum manure application	0	0	0
	Limit on slopes	-2	-4	-2
	Optimal storage	0	1	0
	Application techniques	0	-10	0
	No winter application	-1	-10	-3
	Winter crops	0	-5	0
	Package	-10	-65	-23

Synergistic effects of abatement measures emerge from N input control

Pollution swapping emerges from abatement of N emissions *without* N input control

Measures of CLRTAP / IPPC increase NO₃ leaching more than ND measures increase NH₃ emissions